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The pressure-induced structural phase transition from diamond to S tin in silicon is an excellent test for
theoretical total-energy methods. The transition pressure provides a sensitive measure of small relative energy
changes between the two phases (one a semiconductor and the other a semimetal). Experimentally, the tran-
sition pressure is well characterized. Density-functional results exhibit sensitivity to the particular form of the
exchange-correlation functional. Even the generally much more accurate diffusion Monte Carlo method has
shown a noticeable fixed-node error. We use the recently developed phaseless auxiliary-field quantum Monte
Carlo (AFQMC) method to calculate the relative energy differences in the two phases. In this method, all but
the error due to the phaseless constraint can be controlled systematically and driven to zero. In both structural
phases we were able to benchmark the error of the phaseless constraint by carrying out exact unconstrained
AFQMC calculations for small supercells. Comparison between the two shows that the systematic error in the
absolute total energies due to the phaseless constraint is well within 0.5 mE;/atom. Consistent with these
internal benchmarks, the transition pressure obtained by the phaseless AFQMC from large supercells is in very

good agreement with experiment.

DOLI: 10.1103/PhysRevB.80.214116

I. INTRODUCTION

Theoretical and computational treatment of the effects of
electron correlations remains a significant challenge. Despite
decades of effort invested into solving the Schrodinger equa-
tion (by independent-particle, mean-field, and perturbative
methods), there are still major difficulties in predicting and
explaining many phenomena related to bonding, cohesion,
optical properties, magnetic orderings, superconductivity,
and other quantum effects. The pressure-induced structural
phase transition in silicon from diamond to 8 tin! is an ex-
cellent test for theoretical total-energy methods. The transi-
tion pressure provides a sensitive measure of small relative
energy changes between the two phases (one a semiconduc-
tor and the other a semimetal). Experimentally, the transition
pressure is well characterized. Density-functional theory
(DFT) results have been less than satisfactory, exhibiting
sensitivity to the particular form of the exchange-correlation
(xc) functional.>* Even the generally much more accurate
diffusion Monte Carlo (DMC) method>® has shown'® a
noticeable fixed-node'! error.

The phaseless auxiliary-field quantum Monte Carlo
(AFQMC) method'>'* provides a new alternative for ab ini-
tio many-body calculations to address electron correlation
effects. All stochastic QMC methods®”!%!15 use projection
from a reference many-body wave function. In principle,
these methods are exact. In practice, however, the fermionic
sign problem”'%16-18 causes exponential growth of the vari-
ance with system size and projection time. Transient
methods,!>!'%?% which maintain exactness while enduring the
sign problem, can be very useful if sufficiently accurate in-
formation can be obtained with a relatively short projection,
as we illustrate in the present paper (Sec. IV A). In general,
however, the sign problem must be completely eliminated
(usually with an approximation) to achieve a general, effi-
cient method for realistic systems. The majority of QMC
calculations in fermion systems have been done in this form,
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for example, with the fixed-node approximation”!! in DMC,
which has been the most commonly applied QMC method in
electronic structure.

AFQMC formulates the projection in a different Hilbert
space and controls the sign problem with a global phase
condition in the overcomplete manifold of Slater determi-
nants (in which antisymmetry is imposed). Since the anti-
symmetry ensures that each walker is automatically “fermi-
onic,” the tendency for the walker population to collapse to a
global bosonic state is eliminated in this approach. It is rea-
sonable to expect that an overall phase constraint applied in
this manifold to be less restrictive.!® Applications indicate
that this often is the case. In a variety of systems AFQMC
has demonstrated accuracy equaling or surpassing the most
accurate (nonexponential scaling) many-body computational
methods. These include first- and second-row molecules,!32!
transition-metal oxide molecules,?? simple solids,'>?3 post-d
elements,”* van der Waals systems,” molecular excited
states,2 and in molecules in which bonds are being stretched
or broken.?~28 Most of these calculations used a mean-field
single determinant taken directly from DFT or Hartree-Fock
(HF) for the trial wave function in the phaseless constraint.
As a result, the phaseless AFQMC method reduces the reli-
ance of QMC on the quality of the trial wave function.!>?7-28
This is desirable in order to make QMC more of a general
and “blackbox” approach.

The use of a basis set is a second feature that distin-
guishes the AFQMC method from the standard DMC
method.>~ The latter works in electron coordinate space. As
a result, there is no finite basis-set error per se in DMC.
There are presently two main flavors of the phaseless
AFQMC method, corresponding to two different choices of
the one-electron basis: (i) plane wave with norm-conserving
pseudopotential  (as  widely adopted in  solid-state
physics)!>!* and (ii) Gaussian-type basis sets (the standard in
quantum chemistry).'3 In plane-wave AFQMC, convergence
to the basis-set limit is easily controlled, as in DFT calcula-
tions, using the plane-wave cutoff energy E..
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In this paper, plane-wave AFQMC is used to calculate the
relative energy differences between the two phases. The goal
is to examine the accuracy of phaseless AFQMC, bench-
marking the energy difference at the transition volumes
against experiment and DMC results, and against exact free-
projection AFQMC using primitive unit cells. In the phase-
less AFQMC approach, all but the error from the phaseless
constraint can be controlled systematically and driven essen-
tially to zero. Comparison with exact AFQMC free projec-
tion shows that the systematic error in the total energies due
to the phaseless constraint is well within 0.5 mE,/atom.
Consistent with these internal benchmarks, the transition
pressure calculated from the phaseless AFQMC in large su-
percells is found to be in very good agreement with
experiment.

The paper is organized as follows. Several aspects of the
AFQMC method, including the hybrid formulation and the
reduction in weight fluctuation, are described in Sec. II. This
is followed by specific plane-wave AFQMC calculational de-
tails in Sec. III. Calculated results are presented and dis-
cussed in Sec. IV. Finally, we summarize and conclude in
Sec. V.

II. AFQMC METHODOLOGY

This section reviews aspects of the AFQMC method in
some detail. This is done to facilitate the discussion of sys-
tematic errors in Secs. III and IV, and to provide additional
details on some phaseless AFQMC variants which are used
in this paper. More complete descriptions of the phaseless
AFQMC method can be found in Refs. 12-14, 29, and 30.

A. AFQMC projection by random walks

The ground state of a many-body system, |¥), is ob-
tained by means of iterative projection from a trial wave
function [Wr),

—rH ,~H

e ™Me LWL — W), (1)

where H=K+V is the Hamiltonian of the system, consisting

of all one-body terms, IA(, and two-body terms, V. AFQMC
implements the ground-state projection as random walks in
the space of Slater determinants. The Trotter-Suzuki breakup

g_ﬂ:lz e—TIA(/Ze—TXA/e—TIA(/Z + O(TS) (2)
is used to separate the one- and two-body terms. Expressing
V as a sum of the squares of one-body operators {0;} =V,

V=--X0i=-

V-V, (3)
the Hubbard-Stratonovich (HS) transformation3'32 is then

used to express the two-body projector as a multidimensional
integral,

—‘rV H l e /2 \TO'U (4)
i Jo w27'r

Using Eq. (4) effectively maps the two-body interaction onto

a fictitious noninteracting Hamiltonian with coupling to aux-

PHYSICAL REVIEW B 80, 214116 (2009)

iliary classical fields {o;} = o. The operation of the one-body
prOJector on a Slater determmant |¢) simply yields another
. If |Wp) in Eq. (1) is expressed
as a sum of Slater determinants (e.g., just one if | W) is a HF
or DFT solution), the integral in Eq. (4) can then be evalu-
ated using Monte Carlo sampling over random walker
streams. >33

As discussed further in Sec. II B, it is advantageous com-
putationally to rewrite the two-body potential in Eq. (3), sub-
tracting the mean-field contribution!®!%2039 prior to the HS
transformation,

V=- (5)

1
A = \2 oA =
E(V_me) TV Ve 2th ’

where v; is generally chosen to be the expectation value of
the v operator with respect to the trial wave function,

RS LY

i) ©

B. Phaseless AFQMC

In principle, the procedure in Egs. (1)—(4) yields the exact
ground state. The basic idea can be efficiently realized by
branching random walks, as is used in Sec. IV A to carry out
exact free projection. In practice, however, a phase problem
appears because the repulsive Coulomb interaction gives rise
to imaginary v, complex walkers |¢), and complex (V1| @)
overlaps, causing the variance to grow exponentially and
swamp the signal. To control this problem, importance sam-
pling and a phaseless approximation'? were introduced,
yielding a stable stochastic simulation. The importance sam-
pling transformation leads to a representation of the ground-
state wave function as a weighted sum of Slater determinants

{l#).1>

|#)
[Woy =X w : (7)
s (Uil
A force-bias term results in modification of Eq. (4),
—TV H l e i /2 00— 0'/2 \7(0' (T)U (8)

i Jw \r27T

The corresponding importance-sampled one-body propagator
then takes the form

we|d') — Udtrg(tr)é(tr—F)W(mﬁ) wgld),  (9)

where {7;} =7, g(o) is the multidimensional Gaussian prob-
ability density function with zero mean and unit width, and

é(ﬂ' _ (—T) = e—rl%/ZExf;(o-—ﬁ)w?e—ﬂA(/Z, (10)

|¢') = Bl - )|, (11)
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— _ <‘PT|1§(0"3')|¢> o T-GT/2
Mo ="0ls ¢ B

A

The one-body operator B generates the random walker
stream, transforming |¢#) into |¢’) while W updates the
weight factor wy=W(o, o)w,.

The optimal choice of &, which cancels the weight fluc-
tuation to O(\/7), is given by

\/—<\I’T|‘A’|¢>
(Wrlg) *

where ¢ is the determinant being propagated. Using this
choice, the weight update factor W can be written as!?

(13)

o=

W, @) = e X VHB1ld) = ,~rELld], (14)

where E[ ] is referred to as the “local energy” of |¢). In
practice, we use the average of two local energies to update
the weight,

W(O’,E’) =~ e"’(EL[QS’]"’EL[‘M)/2 . (1 5)

The total energy can be calculated using the mixed-estimate
form, which is not variational.'?

The key to controlling the phase problem is to prevent a
two-dimensional random walk in the complex (W| ¢) plane,
thus avoiding the growth of a finite density at the origin. To
do this, the phase rotation of the walker |¢) is defined by

<\I’T|¢’>>
(W1l

and the walker weight is “projected” to its real, positive
value,

Ao= arg( (16)

Wy e {COS(A0)|W(0',E')|W¢, |A6| < 72 an

0, otherwise

If the mean-field background is nonzero, its subtraction in
Eq. (5) can lead to a reduction in the average rotation angle
A6 (and variance of the energy).!>30

C. AFQMC in hybrid form

Most applications to date have used the phaseless
AFQMC local-energy formalism, described above. In plane-
wave AFQMC, evaluating E; scales as O(N°M log M) while
the propagation step [Eq. (9)] scales as O(NM log M), using
fast Fourier transforms.'* Computation of the overlap matrix
and other operations scale no worse than O(N*M).

To reduce the frequency of evaluating E; , the most costly
part of the calculation, we can use an alternative formulation,
the “hybrid” form!>? of the walker weight update in Eq.
(12). In the hybrid variant, only measurement evaluations of
E; are needed. Since the autocorrelation time is typically
50-100 times the time step 7, this variant may be more effi-
cient. The hybrid method tends to have larger variance than
the local-energy method, however. The latter satisfies zero
variance in the limit of an exact |Wy), explicitly canceling
out some O(7) terms. The two methods also have different
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Trotter behaviors, as illustrated in Sec. III B but they ap-
proach the same answer as 7— 0. The hybrid method is used
for the large supercell calculations reported in this paper.

D. Random walk bounds: Controlling rare event
fluctuations

For any finite population of walkers, the stochastic nature
of the simulation does not preclude rare events, which cause
extremely large population fluctuations. For example, a
walker near the origin of the (W;|¢) plane can acquire a

very large weight in a move |¢’><—1§|¢> [Eq. (9)], due to the
occurrence of a very large (V| ¢')/ (V| p) ratio [Eq. (12)
or Eq. (14)]. To circumvent the problem in a simulation of
finite population, we apply a bound condition in the local-
energy method,

(E) - AE) = E[[$] = (E} + AEy), (18)

where the width of the energy range AFE; is defined as

T

and where the average local-energy value Eg is obtained by
averaging E; measurements during the growth phase.’® If E|.
goes outside this range, it is capped at the maximum or mini-
mum of the range. For a typical 7 (~0.05 E;'), the energy
range allowed by Eq. (18) is large (~12 E})) so E;_ is capped
only in very rare instances.

Similar bounds are introduced in the hybrid AFQMC
method. Defining the hybrid energy as [compare Egs. (12)
and (14)]

Efd]=- log W(o, o)
=- l[105;(—<‘IIT|]§(U_E)|¢>> +0-0- 15-6}
T <q’T| ®) 2 ’
(20)
the value of Ey is bounded as
(Eyy— AEy) = Ey[ ¢] = (E} + AEy), (21)

where E% is estimated as in Eq. (18).

In addition, the walker weights are also bounded such that
W =Wp,y at all times for a reasonable wy,,, (typically set to
the smaller of 100 or 0.1 times the size of the population).
This bound is rarely triggered when the Ey or E; bounding
scheme is in place.

Finally, a force-bias bound is applied in both the local-
energy and hybrid methods. This prevents large modification
of the orbitals when the denominator (¥;|¢) in Eq. (13) is
small,

o = 1.0. (22)

This bound is implicitly 7 dependent, as seen in Eq. (13). We
have found that the energy cap (E; or Ey) had the most
effect in controlling weight fluctuations.

It is important to note that the bounds being applied while
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ad hoc have well-defined limiting behavior. As 7—0, the
bounds on the physical quantities E; and (0;) both approach
*o. The bounds only affect the Trotter error at finite 7 but
not the final answer when 7 is extrapolated to zero.

E. Exact calculations: Unconstrained AFQMC

To estimate the accuracy of phaseless AFQMC, calcula-
tions using exact unconstrained “free” projection were car-
ried out (Sec. III). In free projection, the weights {w,} are
allowed to acquire a phase, i.e., Eq. (17) is not applied. This
is implemented using a modified form of the hybrid method,
where the mean-field average of the v operators is used as
the force bias [instead of Eq. (13)],

Emf =- \‘/_ﬁmf . (23)

This choice is equivalent to the subtraction of mean-field
contribution to the two-body potential described in Eq. (5).
The use of the mean-field background subtraction is essential
in prolonging the stability of the simulation before the signal
is lost to the phase problem. None of the bounds in the pre-
ceding section is applied in the free-projection calculations.

III. AFQMC COMPUTATIONAL DETAILS FOR SILICON
DIAMOND AND g TIN

The present calculations are carried out with plane-wave-
based AFQMC, which uses norm-conserving and separable
Kleinman-Bylander®* pseudopotentials to achieve efficient
O(N*M log M) system size scaling, similar to plane-wave-
based DFT (PW-DFT) calculations. We first describe specific
computational details of the plane-wave AFQMC calcula-
tions, including the pseudopotential, plane-wave cutoff, and
supercells.

Convergence to the basis-set limit is easily controlled, as
in DFT calculations, using the plane-wave cutoff energy E..
Our calculations used E,,=12.5 E},, which is the design cut-
off of our Si pseudopotential (see below). For material sys-
tems such as silicon, we have previously shown'# that a good
E_, at the DFT level, as determined by the norm-conserving
pseudopotential, is sufficient to converge the two-particle
correlations in AFQMC to within typical statistical errors. In
DFT calculations with the local-density approximation
(LDA), the total absolute energies of the diamond primitive
cell using this E., has an error of =0.43 mEj,, (as verified by
using increasingly larger values of E_,). Basis-set conver-
gence errors of energy differences are much smaller, of
course.

AFQMC calculations for large 54-atom 3 X3 X3 dia-
mond and B-tin supercells were done to obtain the transition
pressures, after finite-size (FS) corrections, discussed below.
Test calculations, such as pseudopotential tests and compari-
sons with benchmark exact AFQMC, were carried out for the
smaller two-atom primitive unit cells.

For each supercell and k point, corresponding trial wave
functions | W) were taken as generated from DFT-LDA, us-
ing the ABINIT code.® In S tin, random k points are used,
rather than special points such as Monkhorst-Pack sets, to
remove open-shell effects. For each k, our single-
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FIG. 1. (Color online) Equation of state for the Si diamond and
B-tin phases, comparing all-electron (solid lines) and pseudopoten-
tial (dashed lines) DFT-LDA results. The inset shows the Gibbs
energy as a function of the pressure.

determinant trial wave function is thus unique and nondegen-
erate at the “Fermi surface.”

In the following sections, aspects of the Si OPTUM pseudo-
potential are first discussed. The quality of the pseudopoten-
tial is assessed by comparing the equation of state (EOS) for
the diamond and B-tin structures with all-electron results
within the framework of DFT. Next, efficient finite-size cor-
rections are described, separately analyzing one-body errors,
which are analogous to k-point sampling in PW-DFT and
two-body Coulomb finite-size errors.

A. Si pseudopotential quality

The optimized design method3® was used to generate the
Si pseudopotenital with OPTUM.?” The atomic reference state
was [Ne]3s23p'334%4. All angular momentum channels
(1=0,1,2) used a cutoff radius r.=2.08 bohr, with /=2 as
the local potential. The optimized design pseudowave func-
tion was expanded using five spherical Bessel functions with
wave vector ¢,=5.0 bohr™!, which corresponds to a design
E. =125 E,, with a predicted plane-wave convergence error
of 1 mkE,/atom for the absolute total energy. Explicit tests
with DFT-LDA indicated errors several times smaller (see
above), in both phases.

To test the quality of the pseudopotential, the EOS for the
diamond and B-tin structures was compared to all-electron
results within the framework of DFT. The results are shown
in Fig. 1. All-electron calculations were done using the ELK
(Ref. 38) full-potential linearized augmented plane-wave
(LAaPW) program, and pseudopotential calculations with the
plane-wave-based ABINIT (Ref. 35) code (using the same
OPIUM pseudopotential as in AFQMC). The DFT-LDA
Perdew-Wang functional was used. In the all-electron and
pseudopotential calculations, identical dense k-point grids
were used (6 X6X 6 in diamond and 16X 16 X 16 in B tin).
A temperature broadening of kz7=0.05 eV was used in the
B-tin structure. Birch-Murnaghan*® fits were used to plot the
Gibbs free energy. The agreement for the EOS between the
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TABLE I. Quantities of the diamond and S-tin phases of silicon
computed with DFT, using all-electron LAPW and plane-wave
pseudopotential methods. The xc functional used is the Perdew-
Wang LDA. Volumes and lattice constants are expressed in atomic
units (ag and ay, respectively); energies are in eV; bulk moduli and
pressures are in GPa.

Quantity Pseudopotential LAPW
Diamond phase

Equilibrium volume 263.888 266.474
Equilibrium lattice constant 10.182 10.215
Bulk modulus 95.380 95.327
Cohesive energy 5413 5.409
B-tin phase

Equilibrium volume 199.132 200.364
Bulk modulus 114.760 114.947
Transition pressure 7.67 6.86

pseudopotential and all-electron calculations is good, includ-
ing the transition pressure values, which differ by
~0.8 GPa. These results are quantified in Table L.

B. Trotter errors

The transition pressure calculations in Sec. IV were done
for 3X3X3 supercells, using a Trotter time step of 7
=0.025 E;'. In benchmarking exact AFQMC results in Sec.
IV A, extraplotation to 7— 0 was examined carefully for 1
X1 X1 primitive cells for the phaseless local-energy and hy-
brid AFQMC methods as well as for exact free projection.
Not surprisingly, extrapolation errors largely cancel between
the two structures. For example, the residual errors at 7
=0.025 E;l are 1.7(1) and 1.5(1) mE,, for diamond and B-tin
primitive cells, respectively.

We also did several tests at larger supercell sizes. The
residual error at 7=0.025 E;;' of a 3 X3 X3 diamond struc-
ture supercell was estimated to be 1.6(4) mE, (normalized
to the primitive cell), very similar to the value of 1.7(1) mE,
for the corresponding 1X 1X 1 primitive cell. No explicit
Trotter corrections were applied, therefore, in calculating the
transition pressure, given the error cancellation between the
two structures and the fact that the estimated residual errors
in even the absolute energy are not significantly larger than
the QMC statistical errors.

C. Finite-size errors

Independent-particle methods, such as DFT or HF, can
use Bloch’s theorem to perform calculations in crystals, us-
ing only the primitive unit cell. The macroscopic limit is
achieved by k-point quadrature in the Brillouin zone (BZ).
Many-body methods, by contrast, must be performed for in-
dividual supercells. The resulting FS errors often can be
more significant than statistical and other systematic errors.
Eliminating or reducing the FS errors is crucial, therefore, to
achieve accurate results. The brute force extrapolation ap-
proach, using increasingly larger supercells, is expensive and
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FIG. 2. (Color online) AFQMC and LDA Si S-tin energies at
nine randomly chosen k points in the Brillouin zone of 3 X3 X3
supercell. The dashed horizontal line is the converged LDA energy
using a dense (8 X 8 X 8) Monkhorst-Pack grid. The AFQMC and
LDA one-body FS errors are correlated, and the correction in Eq.
(24) reduces the variation in the QMC data. The two-body FS error
is significant even with a 54-atom supercell but is essentially inde-
pendent of k points.

converges slowly, largely because two-body interactions are
long ranged, causing FS effects to persist to large system

sizes. Alternatively, FS correction schemes can be
used 234142
Both one- and two-body FS corrections?>*! must be ap-

plied to achieve efficient convergence. One-body effects are
related to BZ k-point sampling. These can be largely cor-
rected, using DFT calculations to estimate quadrature errors.
In metals such as B tin, BZ integration errors are aggravated
by  open-shell effects.  Twist-averaged  boundary
conditions>>* can be used in this case to further reduce re-
sidual one-body errors, as is done here for the B-tin phase.
The one-body FS correction is given by??

AE;‘(hell — EDFT _ EEFT, (24)

namely, by subtracting the DFT energy at the same k vector
(EEFT) and adding the DFT energy obtained with a dense k
grid (EPTT). Figure 2 shows the reduced variation in the
AFQMC total energy after this correction is applied, for 3
X3 X3 B-tin supercell. Averaging over the nine randomly
chosen k points before the correction results in a statistical
error (combined error of the nine random data points each of
which has a statistical error bar) of 1 mE; while averaging
after the correction reduces the combined error to 0.6 mE;,.
As mentioned, random k points rather than special points
were used to remove open-shell effects in metals and ensure
that the trial wave function is nondegenerate.

The two-body FS error comes from the artificially in-
duced periodicity of the long-range electron-electron Cou-
lomb repulsion, due to the use of periodic boundary condi-
tions. This error can be reduced significantly, using the
postprocessing correction scheme of Kwee et al.,”® which is
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based on a finite-size DFT xc functional, corresponding to
the finite-sized supercell. This two-body correction is given
by

AEEOUI()mb — EEFT,oc _ EEFT'L, (25)

where EEFT’w [:EEFT in Eq. (24)] is the DFT energy com-
puted with the usual LDA xc functional while EJ" " is the
DFT energy computed with the finite-size LDA xc
functional.” The k dependence of AEL™°™ is very small
compared to that of the one-body correction shown in Fig. 2,
with variations in =0.1 mE;, in S tin.

The total FS correction is the result of applying the one-
and two-body correction terms, Egs. (24) and (25), respec-
tively. This is of course equivalent to applying AE,=EPFT
—EEFT’L to the raw AFQMC energies. The corrected energies
are averaged over the k points. The net effect of applying
both FS corrections is to decrease the energy difference at
the transition volumes from 34(1) to 29(1) mE,. With these
combined FS corrections, the residual errors in the absolute
energies from 3 X 3 X 3 supercells are expected to be small in
silicon.?® Error cancellation in the energy difference between
B-tin and diamond structures further reduces the error in the
calculated transition pressure.

IV. RESULTS AND DISCUSSION

A. Benchmarking the phaseless approximation with exact
free-projection AFQMC

The fermionic sign/phase constraints used by QMC meth-
ods generally introduce uncontrolled approximations. Ex-
amples include the DMC fixed-node approximation and
AFQMC phaseless constraint. Except where benchmarks
with exact methods or experiment are available for compari-
son, the corresponding constraint errors are difficult to quan-
tify. In this section, we show that exact free-projection cal-
culations are feasible for the primitive diamond and [-tin
structures, using plane-wave AFQMC on a large parallel
computing platform. Comparison with the corresponding ap-
proximate phaseless AFQMC calculations shows that the
systematic error due to the phaseless constraint is small
(within 0.5 mE,/atom), as described below.

As illustrated in Fig. 3 for the diamond structure, free
projection to the ground state can be achieved in the primi-
tive cell using large walker populations. The free-projection
calculation was done with a target population size of two
million walkers, using about 2000 cores at the NCCS Jaguar
XT4 computer at Oak Ridge National Laboratory. An accept-
able signal-to-noise ratio is sustained for sufficiently long
imaginary times. For projection times 8= 16 E} !, however,
growing fluctuations, due to the phase problem, begin to
emerge. Eventually the fluctuations become severe enough to
destroy the Monte Carlo signal.'> The energy measurement
for this benchmark is taken after the walkers are sufficiently
equilibrated, B>10 Egl. Similar calculations were per-
formed in the S-tin structure.

Figures 4 and 5 display extrapolations of the Trotter time
step, 7, for the diamond and B-tin structures, respectively.
The figures compare the local-energy and hybrid phaseless
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FIG. 3. (Color online) Comparison of phaseless AFQMC with
exact free projection. The calculations shown are for the primitive
cell in the diamond structure at the experimental equilibrium lattice
constant (10.264 a;). The calculations used L as the k point, and a
time step size of 7=0.025 E; "

methods with free-projection results. As 7—0, the local-
energy and hybrid phaseless methods are seen to converge to
the same result, as expected but with different slopes. To
leading order, free-projection shows 7 behavior while the
local-energy and hybrid methods have linear 7 behavior
since the phaseless constraint (and the bounds in Sec. II D)
in the latter two methods break the quadratic scaling in Eq.
(2). The hybrid method in Figs. 4 and 5 is seen to have the
largest slope. The Trotter behaviors of the respective meth-
ods are similar in the diamond and S-tin structures.

The error in the total energy caused by the phaseless ap-
proximation, after extrapolation to 7— 0, is about 0.7 mE
(or 0.35 mE,, per atom) for diamond and 0.8 mkE, in S tin.
Note that the energy calculated from the phaseless approxi-
mation using the mixed estimate [Eq. (14)] is not
variational.'? Indeed in both cases above it is below the exact
result.
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Imaginary time step T (E;l)

FIG. 4. (Color online) Trotter time step 7 extrapolation for the
diamond structure, as in Fig. 3, comparing local-energy and hybrid
phaseless methods with free projection.
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FIG. 5. (Color online) Trotter time step 7 extrapolation for the
B-tin structure, comparing the local-energy phaseless method with
free projection. Calculations are for the primitive unit cell with
volume of 30 A> and ¢/a=0552 at the reduced Kk
=(0.25,0.25,0.25).

In Table II, we list the absolute energies for three cases
from our free-projection calculations, which can serve as
benchmarks in the future. All the energies have been extrapo-
lated to 7— 0. The corresponding phaseless results are also
listed, which are in very good agreement with the exact re-
sults. We note that the two twist boundary conditions
(k points) in B tin show different behaviors. In k
=(0.25,0.25,0.25) the phaseless energy is below the exact
value (as in the diamond case) while in the other, the phase-
less energy is above. This manifests the varying quality of
the trial wave function at the different k points, which shift
the single-particle energy levels differently. Also, the FS ef-
fects are clearly very large in these small cells, where the
energy for the first k point is in fact below that of the dia-
mond result.

B. Transition pressure

AFQMC calculations were done for 3 X 3 X3 supercells
(containing 54 silicon atoms), at the experimental transition
volumes,* 36.30 A3 for the diamond and 27.91 A3 for the
B-tin structures. For S tin, we used the experimental value of
¢/a=0.550.% (It was shown in Ref. 10 that the dependence
on c/a is weak.) Twist-averaged boundary conditions used

TABLE II. AFQMC energies of Si diamond and S-tin phases for
the two-atom primitive cells, with volumes of 40.07 and 30.00 A3,
respectively. The S-tin c/a ratio was set to 0.552. Phaseless
AFQMC values are from the local-energy formalism. Energies are
in Ej, units.

Phase Reduced k vector  Free projection Phaseless
Diamond 0.5, 0.5, 0.5) —8.05485(8) —-8.0555(1)
B tin (0.25, 0.25, 0.25) —-8.1256(1) —-8.1264(1)
B tin (0.25,-0.25,0.25) —-8.0023(2) —-8.0017(2)
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TABLE III. The transition pressure P, of the diamond to B-tin
transition in silicon. The AFQMC result is listed together with ex-
perimental and other theoretical results. To compare with experi-
ment, appropriate corrections have been applied to the theoretical
results (see text).

P,

Method (GPa)
LDA? 6.7
GGA (BP)® 13.3
GGA (PW91)® 10.9
DMC® 16.5(5)
AFQMC 12.6(3)
Experiment¢ 10.3-12.5

4Reference 2.
PReference 3.
‘Reference 10.
dReference 1.

the single special k point of Baldereschi*® for the diamond
structure, and nine random k points for the S-tin phase. The
total energies lead to a “raw” transition pressure of 15.1(3)
GPa.

To compare with experiment, corrections are required to
account for zero-point motion and thermal effects. We apply
these corrections as given in Ref. 10: (1) a zero-point motion
lowering of 0.3 GPa; (2) a room-temperature quasiharmonic
estimate of the relative stabilization of the -tin phase, which
lowers the pressure by 1.15 GPa. This would give a transi-
tion pressure of 13.6(3) GPa. In addition, standard mean-
field pseudopotentials generated from LDA or HF, such as
the one used in the present paper, do not account for many-
body effects in the core. A correction was estimated in Ref.
10, by explicitly including a many-body core-polarization
potential, which further lowers the pressure by ~1.2 GPa.
Assuming that our LDA pseudopotential is similar to that in
Ref. 10, we apply the same correction. Table III reports our
final result, and compares it to experiment and to other the-
oretical results. Corrections (1) and (2) have also been ap-
plied to the DFT results. Our DFT-generalized gradient ap-
proximation (GGA) calculation with the Perdew-Burke-
Ernzerhof (PBE) functional gives a transition pressure of
about 2 GPa smaller than that with PW91. (This is consistent
with the results of Ref. 4.)

The transition pressure is not very sensitive to the choice
of transition volumes. For example, using the DMC pre-
dicted volumes instead of the experimental values changes
the DMC energy difference by only 0.01 eV, from 0.49 to
0.50 eV, changing the transition pressure by less than
0.3 GPa.

The best calculation to date with the highest level of
theory is the DMC calculations in Ref. 10. Compared to
experiment, the somewhat overestimated DMC P,=16.5(5)
value was attributed to the fixed-node error.!® This seems
consistent with our results. The DMC discrepancy corre-
sponds to a larger raw energy difference of 36 mE;, between
the two phases, compared to 29(1) mkE, for phaseless
AFQMC. As shown in the previous section, the error due to
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the phaseless approximation (=0.5 mE,) appears to be an
order of magnitude smaller than this. Our calculations show
that experiment and theory are in quantitative agreement on
the diamond to B-tin transition.

V. SUMMARY

We have applied the phaseless auxiliary-field quantum
Monte Carlo method to study the pressure-induced structural
phase transition from diamond to S tin in silicon. This is a
recently developed nonperturbative, many-body approach
which recovers electron correlation by explicitly summing
over fluctuating mean-field solutions with Monte Carlo. The
only source of error which cannot be systematically driven to
zero is that of the global phase constraint, used to control the
sign/phase problem. We quantified the systematic error from
this phaseless approximation by exact unconstrained
AFQMC calculations in the primitive cell, carried out on
large parallel computers. In both structural phases the error
was found to be well within 0.5 mE;/atom. A transition
pressure was calculated from the energy difference between
the two phases at the experimental transition pressure, using
54-atom supercells. Twist-averaging boundary-condition and
finite-size corrections were applied, which greatly acceler-
ates the convergence to the thermodynamic limit. After cor-

PHYSICAL REVIEW B 80, 214116 (2009)

rections for zero-point effect, thermal effect, and the (lack of)
core polarization in the pseudopotential, the AFQMC results
yield a transition pressure of 12.6*+0.3 GPa, compared to
experimental values of 10.3—12.5 GPa.

The good agreement between the phaseless AFQMC re-
sult and experiment is consistent with the internal benchmark
with unconstrained AFQMC. Our analysis indicates that the
possible combined error from the calculations should be be-
low 1 GPa. These include pseudopotential transferability er-
rors and core-polarization effect, residual finite-size errors,
and the error from the phaseless approximation.
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